

KINGMAX SERIAL SERVO COMMUNICATION PROTOCOL (5th Version)

Usage rights: public Protocol version: v5.2.0 Revision date: 2020.07.27

-、Summary of communication protocol

This document is a protocol document (5thversion) for communication control of two-wire/singlewire TTL serial bus and RS -485/RS-232 industrial serial bus series intelligent servos (or motors, hereinafter referred to as servos) developed by KINGMAX HOBBY CO., LTD Intelligent Technology.

This protocol uses half-duplex master-slave question-and-answer communication, that is, the controller acts as the host to send read and write commands to the servo, and the servo acts as a slave to perform corresponding actions or responses according to the specific situation. Multiple servos are allowed to be mounted on a bus, and each servo on the bus has a unique ID (0~250). The controller can access specific servos through the servo ID, or broadcast ID (254) Send data to all the servos on the bus. In addition, you can use the super ID (253) to send query commands to the servos on the bus, and the servos with different IDs will respond in tim-esharing.

The communication mode is serial asynchronous mode, a frame of data is divided into 1 start bit, 8 data bits and 1 stop bit, no parity bit.

 \Box 、 Command packet format

2.1、Command format

Frame	ID	Data	Command	Command	Parameter	Data
header	number	length	function	address	sequence	validation
2 bytes	1 byte	1 byte	1 byte	1 byte	N bytes	1 byte
0xF9 0xFF	id	N+3	cmd	adr	Send parameters	Checksum

Send frame:

Response frame:

Frame	ID	Data	Command	Command	Parameter	Data
header	number	length	function	address	sequence	validation
2 bytes	1 byte	1 byte	1 byte	1 byte	N bytes	1 byte
	bi	N±3	cmd	adr	Response	Chocksum
	ia	C+N	Cina	aui	parameters	CHECKSUIII

Frame header: indicates the beginning of the command.

ID number: The sender can use super ID (253), broadcast ID (254), or target servo ID,

The responder returns its own ID.

Data length: equal to the total number of bytes of [ID number +...+parameter N], that isN+3. Command function: used to describe the function type of the command, such as read, write, firmware update, etc. See "Command Function List" for details.

Command address: The address that the command needs to be read and written, see "Servo Control Command Address List" for details.

Parameter sequence: the sending/response parameters contained in theommand Data verification: single-byte sum verification method, Checksum= ~((ID +...+parameter N)&0xFF) Note 1: The maximum number of bytes in the command packetis 256 bytes. Note 2: Sending the read command needs to use the super ID (253) or the target servo ID, and the broadcast ID (254) has no response.

Frame	ID	Data	Servo	Data
header	number	length	status	validation
2 bytes	1 byte	1 byte	1 byte	1 byte
0xF9 0xF5	id	0x02	Status	Checksum

Servo status response frame (short response frame):

Servo state : Feedback the current status of theServo, see "Current status of the Servo" for details. Data valida tion: single-byte sum verification methodChecksum= ~((ID + data length + device status)&0xFF)

$2.2 \smallsetminus$ Current status of the Servo

By reading the currentstatus of the Servo, the controller can quickly know whether the Servo is abnormal and take corresponding measures.

Data bit	State name	status description
		1=Servo/motor is executing running_command
Bit7	Running	Automatically clear after the end of rotation or the protection
		triggered to stop rotation
		0=success; 1=unsuccess ful (usually used to judge when
Ritt	Command execution result	modifying user data)
DIO	command execution result	Current command is valid automatically clearedon next
		command
		Data packet verification is abnormal, or the command function
D i+5	Command exception	is not open
ыо	Command exception	Current command is valid automatically deared on next
		command
		1=under protection; 0=no abnormal protection
Bit4	Hardware exception protection	The specific exception type can be read through the command
		Cannot be dismissed, only restart the servo
D ;+2	Stall abnormal protection	1=under protection; 0=no abnormal protection
ыо	(overload prote t ion)	Cleared after removing the protection
Rit)	Tomporature protection	1=under protection; 0=no abnormal protection
DIZ	remperature protection	Cleared after removing the protection
Bit1	Current abnormal protection	1=under protection; & no abnormal protection
	Current abnormal protection	Cleared after removing the protection
R i+0	Voltage abnormal protection	1=under protection; 0=no abnormal protection
DIW	(Low voltage/High voltage)	Cleared after removing the protection

2.3、Command function list

FunctionID	Command function name	description
		Ping online servos, this commanddoes not requirethe
0x01	Servo Ping	commandaddress and commandparameters
		the servo uses "short response frame" to respond
0x02	Read command	Read " Servo Control Command Address List " data
		Read "Servo Control Command Address List" data, read data
0x82	MultiID read command	on multiple IDs at the same time in one command
		See "4.1 Multi-ID Read Command" for details
		Write data to "Servo control command address list"
0x03	Write command	If the servo response level=1: the servo uses "short response
		frame" to respond
		Write data to "Servo Control Command Address List", send
0,292	MultiID write command	data to multiple IDs at the same time in one command
0203		See "4.2 Multi-ID Write Command" for details
		the servo does not respond on this command
0×04	Suncurito command	See "4.3 Sync Write Command" for details, the servo does
0x04	Sync write command	not respond
0,294	Sync write execution	See "4.3 Sync Write Command" for details, the servo does
0x04	command	not respond
0,79	Firmware upgrade	See the file "De Sheng Smart Servo Firmware Upgrade" for
0278	command	details
0x7E	Factory test command	See the file "Factory Test Command Address List" for details
0x7F	Customer Custom command	See the file "Customized Command Address List" for details

\equiv 、Servo control command address list

and usage description

- Note 1: The address list uses "read command_0x02" and "writecommand_0x03" for direct read and write does not support continuous read and write to multiple addresses
- Note 2: This protocol adopts[little-endian mode] to process multibyte data transmission and reception, that is, lowbyte data is sent first, then highbyte data, such as sending 1000 (0x03E8), sending 0xE8 first, then sending 0x03.
- Note 3: The Servo rotation direction is divided intopositive and negative directions, the negative direction is the direction of the negative steering angle value, the positive direction is the direction of the positive steering angle value, and the positive direction corresponds to clockwise or counterclockwise depending on different products. Generally, The positive direction is clockwise (looking down on the main output shaft).

Note 4: User data can be modified and stored when power off.

Noto5: Data type description

Int8	Signed single-byte integer, data range -128~127	Uint8	Unsigned single byte integer number, data range: 0~255
Int16	Signed doublebyte integer number, data range		Unsigned double byte integer number, data
mtro	-32768 ~ 32767	Unitio	range: 0~65535
	Signed four-byte integer number, data range		Unsigned fourbyte integer number, data
Int32	-2147483648【0x8000000】~2147483647	Uint32	range:
	【0x7FFFFFFF】		0~4294967295【0xFFFFFFFF】

3.1 Read and write commands for basic parameter configuration of Servo

Command		Command		paran	neter	User
ado	dress	name	r/w	type	Initial value	data
0		Retain				
1	0x01	Servo status	read	Uint8、Uint8	0,	No
2	0x02	System restart	write		/	No
3	0x03	User data reset	write	Uint8		No
4-9		reserve				
10	0x0A	product information	read	T1	T2	No
11	0x0B	Protocol version	read	Uint32		No
12	0x0C	Firmware version	read	Uint32		No
13-14		reserve				
15	OvOE	Servo ID	Read	Llint 8	0	Vec
15	UXUF	5610010	Write	Unito	U	165
16	0v10	haud rate	Read	Llint16	1152	Voc
10	0/10	baudrate	Write	Unito	1152	105
17	0v11	System configuration	Read	Llint8	0v02	Ves
17	UXII	parameters	Write	Unito	07.02	165
18	0v12	Response waiting delay	Read	llint16	200	Voc
10	0/12	Response waiting delay	Write	Gillio	200	163

10	0v13	Maximum outputtorque	Read	llint16	1000	Yes
19	UXIS	Maximum outputtorque	Write	UIILTO	1000	
20	0.14		Read	Lline1C		Vaa
20	UX14	Maximum output current	Write	Untro		res
21	0x15	Maximumrotation	Read	Llint16		Voc
21	0215	speed	Write	Unitro		res
22	0.16	Level-1 zero position ^{T3}	Dead	Int16		Vac
22	UXIO	offset	Read		-	ies
22	0x17	Level-2 zero position ^{T3}	Read	Int16	0	Vor
23		offset	Write		0	Tes
24	0,19	Level-2 zero position	write	Int9		No
24	UXIO	offset accessory	write	шо		NO
25	0x19	Minimum rotation angle	Read	Int16		Voc
		limit	Write	Incro		Tes
26	0.14	Maximum rotation angle	Read	Int16		Vac
	Ux1A	limit	Write	IIILIO		res
27-49		reserve				

T1: "--" In the data type, there is no fixed type or number, please refer to the detailed description below for reading and writing

T2: "--" In the initial value, it means that there is no fixed initial value, or different according to different products

T3: Zero position When the electrical zero position and structural zero position of the ervo are not in the same position, it can be solved by adjusting the zero offset, or by adjusting the value to make the electrical neutral position reach the position the wants, but if the potentiometer type For products, the zero offset angle is generally not too large, generally only $\pm 10^{\circ}$, otherwise it will affect the angle on both sides.

3.1.1 Servo status read command_0x01

Read sending parameters: none

Read response parameters: [Servo status], [random number]

The random number in the response is mainly used to identify the situation when there are multiple servos with the same ID online, for example, when there are two ID1 servos at the same time, after receiving the command, the two servos have the opportunity to respond at the same time

F9 F5 01 05 02 01 00 05 xx

F9 F5 01 05 02 01 00 16 xx

Then the host can determine that there maybe multiple ID1 online at the same time by determining that the verification data is abnormal

3.1.2、System restart write command_0x02

Write sending parameters: [0xE1 0xE2 0xE3 0xE4]

The parameter is a fixed sequence, the servo will restart immediately after receiving the command no response

3.1.3 User data reset write command_0x03

Write sending parameters: [Parameter]

Parameter=0x01:Reset other user data except [ID, baud rate, zero positionoffset] Parameter=0x02:Reset all user data

- 3.1.10 v Product information readcommand_0x0A To be added
- 3.1.11、Protocol file version read command_0x0B

Read sending parameters: none

Read response parameters: [protocol version] parameter format 0x@@##&&&&

0x@@ : Main version number, different versions may be incompatible

0x##: Small version number, high version is compatible with small version, mainly used to adjust some functions

0x&&&&: If it is not 0, it is customized version, if it is 0, it is standard version

- 3.1.12、Servo firmware version read command_0x0C
 - Read s ending parameters: none
 - Read response parameters: [firmware version] parameter format 0x@@##&&&&
 - 0x@@: bootloaderVersion number, when it is 0, there is no bootloader upgrade function, such as v5.2=0x52

0x##: Hardware version number, such as v1.1=0x11

0x&&&&: Software version number, such as v1.0.02=0x1002

3.1.15 Servo ID read and write command_0x0F

Read sending parameters: none

Read response parameters: [Servo id]

Write in sending parameters: [Servoid]

When writing a new ID command, if there is a response, the response ID will use the old ID to respond, and then switch to the new ID

3.1.16 Baud rate read and writecommand_0x10

Read sending parameters: none

Read response parameters: [baud rate /100]

Write sending parameters: [baud rate/100]

The baud rate is an integer multiple of 100, and the range may vary according to different products, generally9600~1000000 bps

For example, when writing 1152, the communication baud rate is set to115200 bps Note: After modification, it will take effect aftersystem restart or power on again

3.1.17、System configuration parameter read and writecommand_0x11 Read sending parameters: none

Read response parameters: [system configuration parameters]

Write sending parameters: [System Configuration Parameters]

System configuration parameters

Data bit	Function Description
other	retain
	Response level
Bit3	0=Only theping and read command will respond; 1=The query read and writecommand will respond
	Write command response will only respond when the servo ID is used
D:+0	Direction of rotation
BILZ	0=positive drection is clockwise; 1=positive direction is counterclockwise
D:+1	The output state of the servo when idle
DILI	0=Full release, no brake damping; 1=Brake damping
Bit 0	The output state of the servo when power on
	0=Full release, no brake damping; 1=Brake damping

Please update this parameter in a non-working state to prevent out of control

3.1.18、Response waiting delay read and writecommand_0x12

Read sending parameters: none

Read response parameters: [Response waiting delay]

Write sending parameters: [Response waiting delay]

Response waiting delay value, used for the waiting time between the servo after receiving the command and sending the response, the unit is microsecond, eg:200us

- 3.1.19 Maximum output torque read and writecommand_0x13
 - Read sending parameters: none

Read response parameters: [Maximum output torque]

Write sending parameters: [Maximum output torque]

That is, the PWM value of the motor drive, the value range is 0~1000, corresponding to 0%~100% Note: "Torque" in this document refers to the driving PWM of the motor, which will not be

explained below

3.1.20 Maximum output current read and writeommand_0x14

Read sending parameters: none

Read response parameters: [Maximum output current]

Write sending parameters: [Maximum output current]

The maximum current when theservo is locked, the unit is mA, the default value depends on the product

Read sending parameters: none Read response parameters: [Maximum rotation speed] Write sending parameters: [Maximum rotation speed] The maximum speed in the speed control mode, the unit is: degreesper second, the default value depends on the producteg: 360deg/sec

3.1.22 Level-1 zero positionoffset read and writecommand_0x16

Read sending parameters: none

Read response parameters: [zero offset]

The level-1 zero positionoffset value of the servo, the unit is 0.1 degree

The level-1 zero position offset is mainly used for setting when it leaves the factory. This parameter cannot be modified by the user

 $3.1.23\$ Level-2 zero position offset read and write command_0x17

Read sending parameters: none

Read response parameters: [zero offset]

Write sending parameters: [zero offset]

The level-2 zero position offset value of theservo, the unit is 0.1 degree, the value range depends on different products

Note: Please use this command without turning and locking, otherwise theservo will turn to the updated position at full speed. If you need to adjust the zero position when the servo locking please use the "zero offset accessory ".

3.1.24、Level-2 zero positionoffset accessory command _0x18

Write sending parameters: [offset increment]

The relative incremental value of the secondary zero offset of the servo, the unit is 0.1 degrees, and the value range is: -100~100

After receiving the command, the servo will add [Offset Increment] to the level-2 zero position offset value, which is mainly used to adjust the zeroposition in continuous increments.

If it is an encoder type product, you can set the current position to zero by writing[offset increment=0]

3.1.25 Minimum rotation angle limit read and writecommand_0x19

Read sending parameters: none

Read response parameters: [minimum angle]

Write sending parameters: [minimum angle]

When the product has a structural limit or uses a potentiometer, or is used in some special scenes, the minimum value of the target angle when the servo is performing angle rotation, the servo cannot exceed the minimum value, but when the parameter is 0, Means unlimited,

The value unit is 0.1 degrees, and the value range depends on different products

3.1.26 Maximum rotation angle limit read and write command_0x1A Read sending parameters: none

Read response parameters: [maximum angle] Write sending parameters: [maximum angle]

When the product has a structural limit or uses a potentiometer, or is used in some special scenes, the maximum value of the target angle when the servo is performing angle rotation, the sevo cannot exceed the maximum value, but when the parameter is 0, Means unlimited

The value unit is 0.1 degrees, and the value range depends on different products

3.2 Anomaly detection protection read and write command

Command		Command		Command	parameter	User
ado	dress	name	r/ VV	type	Initial value	data
50	0v32	Abnormal protection	Read	Llint 8	0×0E	Voc
50	0,52	enable switch	Write	Unito	UXUF	Tes
E1	0,22	Abnormalprotection	Read	llint9	0,00	Voc
51	0222	release method	Write	Unito	0,00	Tes
52	0.424	Servo state during	Read	llint9	0.454	Voc
52	0X34	abnormal protection	Write	Unito	0x34	Tes
52	025	Llardware abreamalflag	Read	l lint 9	0,00	No
22	0x35	Hardware abnormaniag		UINT8	0x00	NO
51	0x36	Abnormal state flag	Read	Uint8	0x00	No
54		Abhormai state nag	Write			
55-59		reserve				
60	0.20	Abnormal voltage	Read	llint9 llint9		Voc
00	UXSC	threshold	Write	UINTO, UINTO	,	Tes
61	0,2D	Abnormal temperature	Read	llint9 llint9	60、5	Yes
01	UX3D	threshold	Write			
(2)	0v2E	Abnormal current	Read	Uint16 Uint9	20	Voc
02	UXSE	threshold	Write		20	Tes
(2)	0,25	Stall/overload abnormal	Read	Uint16 Uint9	600	Voc
60	UXSF	threshold	Write		000、20	res
64-69		reserve				

3.2.50 Anomaly protection enable switch read and write command_0x32

Read sending parameters: none

Read response parameter: [parameter]

Write sending parameters: [Parameter]

Parameter data bit		Function Description			
other		reserve			
	Bit3	Stall /overload abnormal protection	0= disable, 1= enable		
	Bit2	Temperature abnormal protection	0= disable, 1= enable		
	Bit1	Current abnormal protection	0= disable, 1= enable		
	Pi+ O	Voltage abnormal protection	0= disable, 1= enable		
	DILU	(Low voltage/High voltage)			

When the product detects an abnormality, the protection will only be executed when the abnormal protection isenabled

3.2.51 Exception protection release mode read and write command_0x33

Read sending parameters: none

Read response parameter: [parameter]

Write in sending parameter: [parameter]

data bit	Function Description		
other	reserve		
Bit3	Stall/overload abnormal protection	0=auto/command release, 1=only command release	
Bit2	Temperature abnormal protection	0=auto/command release, 1=only command release	
Bit1	Current abnormal protection	0=autocommandrelease, 1=only commandrelease	
Bit 0	Voltage abnormal protection	0=auto/command release, 1=only command release	

3.2.52 Servo state when abnormal protection read and writecommand_0x34

Read sending parameters: none

Read response parameter: [parameter]

Write sending parameters: [Parameter]

data bit	7	6	5	4	3	2	1	0
Protection item	Stall/overload		Temperature		Overcurrent		Voltage protection	
	protection pro		prote	ction	protection		voltage protection	
Protection method	0b00: Release the servo torque without brake (no damping force)							
	0b01: Release the torque of the servo with brake (with damping force)							
	0b1x: Locking at the current position							

Temperature prote ction and voltage protection can only be configured as 0b00/0b01. Protection priority: voltage > temperature > current > stall/overload

The methodlocking at the current position can only be used in the servo mode, the servo can' tbe locking in the motormode

3.2.53 Hardware abnormalflag read command_0x35

Read sending parameters: none

Read response parameter: [parameter]

Parameter data bit	Function Description				
Bit7	Other abnormal				
Bit6	Motor abnormal				
Bit5	Position sensor abnormal				
Bit4	Current sensor abnormal				
Bit3	Voltage sensor abnormal				
Bit2	Temperature sensor abnormal				
Bit1	Memory read and writeabnormal				
Bit 0	Crystal abnormal				

The hardware abnormalis only detected when the machine poweron, and it is protected immediately after the abnormality is detected. The servo will not be able to perform any rotation control, but it can be read and written.

3.2.54 Status abnormal flag read and writecommand_0x36 Read sending parameters: none

Read response parameter: [parameter]

Write sending parameters: [Parameter]

data bit	Function Description				
other	reserve				
Bit3	Stall/overload abnormal protection				
Bit2	Temperature abnormal protection				
Bit1	Currentabnormalprotection				
Bit 0	Voltage abnormal protection				

The protection can be cleared and released by command with writing 1 to the corresponding bit.

3.2.60 Voltage abnormal threshold read and write command_0x3C

Re ad sending parameters: none Read response parameters: [High voltage threshold] [Low voltage threshold] Write sending parameters: [High voltage threshold] [Low voltage threshold] Voltage threshold unit: Volt (V), the abnormality detection time is fixed at 3 seconds

3.2.61 Temperature abnormal threshold read and writeommand_0x3D

Read sending parameters: none

Read response parameters: [temperature threshold] [release protection temperature threshold] Write sending parameters: [temperature threshold] [release protection temperature threshold] Temperature threshold unit: Celsius (° C), the abnormality detection time is fixed at 3 seconds Temperature threshold for deprotection: due to the hysteresis characteristics of temperature changes, there needs to be a certain judgment interval between triggering protection and deprotection. For example, [temperature threshold]=60, [deprotection temperature threshold]=5, and the servo is at 60°C After protection, the protection can be released after the temperature drops to 55°C

3.2.62 Current abnormal threshold read and write command_0x3E

Read sending parameters: none Read response parameters: [current threshold] [abnormal detection time] Write sending parameters: [current threshold] [abnormal detection time] Current thresholdunit: milliampere (mA) Time unit: 100 milliseconds, if [abnormal detection time]=20, the detection time is 2 seconds

3.2.63 Stall/overload abnormal threshold read and write command_0x3F Read sending parameters: none

Read response parameters: [PWM threshold] [abnormal detection time]

Write sending parameters: [PWM threshold] [abnormal detection time]

PWM threshold: the value range is 0~1000. The internal servo will use this value and other servo parameters to detect and judge the stall/overload abnormality

Time unit: 100 milliseconds, if [abnormal detection time]=20, the detection time is 2 seconds

Command		Command P/M		Command	User	
address		name		type	Initial value	data
70	0x46	current position	Read Write	Int32/Int16 ^{T1}		no
71	0x47	Current speed	read	Int16		no
72	0x48	existingcurrent	read	Int16		no
73	0x49	Current torque (PWM)	read	Int16		no
74	0x4A	Current Temperature	read	Int16		no
75	0x4B	Current voltage	read	Int16		no
76	0x4C	Current position deviation	read	Int32/Int16		no
77	0x4D	Current rotation time	read	Uint32		no
78~89		reserve				

3.3、Servo current stat us parameter read command

T1: A/B indicates that there are multiple types of parameters in the address, and the corresponding data type is used according to the specific situation

3.3.70、Current position read command_0x46

Read sending parameters: none

Read response parameter: [current position], parameter unit: 0.1 degree (0.1 $^\circ\,$)

Write sending parameter: [any value]

Writing any value to this address will reset [Current Position] to 0, which is only valid for some products, mainly used for motor products

Parameter type selection: When the parameter value exceeds the Int16 type, the Int32 type will be used, and the type can be distinguished according to the commandlength

3.3.71、Current speed read command_0x47

Read sending parameters: none

Read response parameter: [current speed], parameter unit: degree/sec (°/sec)

- 3.3.72 Existing current read command_0x48 Read sending parameters: none Read response parameter: [existing current], parameter unit: milliampere (mA)
- 3.3.73、Current torque (PWM) read command_0x49 Read sending parameters: none Read response parameter: [current torque (PWM)], value range: 0~1000

3.3.74、Current temperature read command_0x4A

Read sending parameters: none Read response parameter: [current temperature], parameter unit: Celsius (°C)

- 3.3.75 Current voltage read command_0x4B Read sending parameters: none Read response parameter: [current voltage], parameter unit: millivolt (mV)
- 3.3.76、Current position deviation read command_0x4C

Read sending parameters: none

Read response parameter: [current positiondeviation], parameter unit: 0.1 degree (0.1°)

Real-time feedback of the position deviation from the target position when the rudder is locked and rotated

Parameter type selection: When the parameter value exceeds the Int16 type, the Int32 type will be used, and the type can be distinguished according to the command length

3.3.77, Current rotation time read command 0x4D

Read sending parameters: none

Read response parameter: [current rotation time], parameter unit: millisecond (mS)

Real-time feedback of the rotation time of the servo after receiving the rotation control command. When the rotation ends, the stop time is incremented. After the servo stop rotating, read this value to know the time taken for this rotation.

3.4 Rotation control command

Command address		Command	D/M/	Command	parameter	User
		name	n/ VV	type	Initial value	data
90	0x5A	Control mode	Read Write	Uint8	0	no
91	0x5B	Current torque limit	Read Write	Uint16		no
92	0x5C	Existing current limit	Read Write	Uint16		no
93	0x5D	Current speed limit	Read Write	Uint16		no
95~99		reserve				
100	0x64	Servo mode torque switch	Read Write	Uint8	3	no
101	0x65	Servo mode timing control	write	Int16、(Uint16) ^{T1}	、 (0)	no
102	0x66	Servo mode constant speed control	write	Int16、(Uint16)	、 (0)	no
103	0x67	Advanced control of servo mode	write	Uint8、Int16、Int16	,,	no
104	0x68	Servo mode interpolation control	write	Int16		no
105~109		reserve				
110	0x6E	Motor mode constant torque control	write	Int16	-, -	no
111	0x6F	Motor mode constant speed control	write	write Int16、		no
112	0x70	Advanced control of motor mode	write	Uint8、Uint16、Uint16	、、	no
113~119		reserve				

T1: When sending a write command, the parameters in parentheses can be omitted, and the command will be executed accorditog the default parameter value.

$3.4.90\$ Control mode read and writecommand_0x5A

Read sending parameters: none

Read response parameters: [current control mode]

Write sending parameters: [current control mode]

parameter	Description
0	Automatic mode: automatically select the control mode accordingby commands
1	Servo mode: only receive servo mode control commands
2	Motor mode: only receive motor mode control commands
other	invalid

Switch to motor mode only when the servo is idle or the torque switch isturned off

3.4.91、Current torque limit read and write command0x5B

Read sending parameters: none

Read response parameter: [Current torque limit], that is, the maximum output PWM of the motor, the parameter range: 0~1000

Write sending paameters: [currenttorque limit]

The initial value of the parameter is the value of [Maximum Output Torque] in the user data. This value will be updated synchronously when the user data is updated, but update this value will not affect the value in the user data storage.

3.4.92 Existing current limit read and write command_0x5C

Read sending parameters: none

Read response parameter: [existing current limit], that is, the maximum output current of the motor, parameter unit: mA

Write sending parameters: [existing current limit]

The initial value of the parameter is the value of [Maximum Output Current] in the user data. This value will be updated synchronously when the user data is updated, but update this value will not affect the value in the user data storage.

3.4.93、Current speed limit read and writecommand_0x5C

Read sending parameters: none

Read response parameter: [current speed limit], that is, the maximum rotation speed of the steering gear/motor in closed-loop speed control, parameter unit: degreeper second

Write sending parameters: [current speed limit]

The initial value of the parameter is the value of [Maximum Rotation Speed] in the user data. This value will be updated synchronously when the user data is updated, but update this value will not affect the value in the user data storage.

3.4.100 $\$ Servo mode torque switch read and write command_0x64

Read sending parameters: none

Read response parameters: [Servo Torque Switch]

Write sending parameters: [Servo Torque Switch]

Switch value	Description					
0	Without brake closing torque (no damping force), writing this value while rotating will stop rotating					
1	With brake closing torque (with damping force), writing this value while rotating will stop rotating					
2	Turn on the torque and locking at the current position. Writing this value while turning will stop and locking					
3	Pre-start state, when the torque is turned off, the torque is automatically turned on and the rotation is executed when the rotation command is received					
5	This value cannot be written by externatommands, it is used for automatic writing inside the servo, and is					
	generally set after the protection is triggered					
other	invalid					

In the servo mode, the rotation command can be executed only when the torque is turned on

Write sending parameters: [target position angle], ([rotation time]) Target position angle value unit: 0.1 degree Rotation time value unit: millisecond

After receiving the command, the servo will rotate from the current position to the target position in a specified time

The second parameter can be omitted, and the fastest speed will be used.

3.4.102、Servo mode fixed speed control write command_0x66

Write sending parameters: [target position angle], ([rotation speed])

Target position angle value unit: 0.1 degree

Rotation speed numerical unit: degreeper second

After receiving the command, the servo rotates from the current position to the target position at the specified speed

The second parameter can be omitted, and the fastestspeed will be used.

3.4.103、Servo mode advanced control write command_0x67

Write sending parameters: [Control byte], [Parameter 1], [Parameter 2]

[Control byte]					
Bit7-4	Bit3-0				
0: [Parameter 1] is the absolute target position angle	0: [Parameter 2] is the rotation time				
1: [Parameter 1] is the relative target rotation angle	1: [Parameter 2] is the rotation speed				
Other: invalidcommand	2: [Parameter 2] is the maximum output torque				
	Other: invalidcommand				

Absolute target position angle: the position angle value that theservo rotates to after receiving the command the unit is: 0.1 degree

Relative target rotation angle: the number of angles the servo rotates relative to the current position after receiving the command the unit is: 0.1 degree

Rotation time: he time required to complete this rotation, in milliseconds

Rotation speed: the speed of this rotation, the unit is: degreeper second

Maximum torque: this rotation rotates at the fastest speed, but the maximum motor output PWM does not exceed the parameter value, the value range: 0~1000

3.4.104, Servo mode interpolation control write command_0x68

Write sending parameters: [target position angle]

Target position angle value unit: 0.1 degree

After receiving the command, the servo will rotate from the current position to the target position at the fastest speed

There is no acceleration and deceleration control plan inside the servo. The user sends the planned position to the servo according to a fixed frequency. The planned rotation speed needs to consider the actual fastest speed of the servo, otherwise there will be a problem that the follower cannot respond.

3.4.110、 Motor mode constant torque control write command_0x6E Write sending parameters: [rotation torque]

After receiving the command, theservo will rotate with constant torque (PWM), the value range: -1000~1000

Greater than 0 means forward rotation, less than 0 means reverse direction rotation, equal to 0 means stop rotation

3.4.111、 Motor mode constant speed control write command_0x6F

Write sending parameters: [rotation speed]

After receiving the command the servo rotates at a constant speed, the unit of value: degree per second

Greater than 0 means forward rotation, less than 0 means reverse direction rotation, equal to 0 means stop rotation

Only use encoder type products to support speed control mode

3.4.112、Motor mode advanced control write comman<u>d</u>0x70

Write sending parameters: [Control byte], [Parameter 1], [Parameter 2]

	-
IL ONTROI	DVTEL
LCOULION	Nytej

Bit7	Bit6	Bit5-4	Bit3-2	Bit1	Bit0			
1=stop	0	0=[Parameter 1] is invalid, keep turning	0=[Parameter 2] is the rotating	Status after	0=Positive			
		1=[Parameter 1] is the rotation time	torque	stopping:	1=Reverse			
		2=[Parameter 1] is the rotation angle ¹	1=[Parameter 2] is the rotation	0=no brake				
		3=[Parameter 1] is the rotationcircle [™]	speed ¹¹	1=brake				
			Other = invalid command					

T1: Only use encoder type products to support fixed angle/turn/speed control mode

Stop the rotation immediately after receiving the stop command or the rotation is completed

The unit of rotaton time is: 0.1 second

The unit of rotation angle is: 1 degree

The unit ofrotationcircle is: 0.1 circle

The rotation torque (PWM) value range is: 0~1000

The unit of the rotation speed is: degreeper second($1^{\circ}/S$)

四、Description of the use of advanced α command functions

Function number	Command function name	description				
		Query online servos, this command does not require command address and				
0x01	Servo query	commandparameters				
		The servo uses "short response frame" to respond				
0x02	Read command	Read "Servo control command address list" data				
		Read the "Servo Control Command Address List" data, read data to				
0x82	Multi-ID read command	multiple IDs at the same time in one command				
		See "4.1 Multi -ID Read Command" for details				
		Write data to "Servo control command address list"				
0x03	Write command	If the servo response level=1: the servo uses "short response frame" to				
		respond				
		Write data to "Servo Control Command Address List", and send data to				
0,02	Multi-D write command	multiple IDs at the same time in one command				
0x05		S ee "4.2 Multi-ID Write Command" for details , the servo does not				
		respond				
0x04	Sync write command	See "4.3 Sync Write Command" for details, the servo does not respond				
0x84	Sync write execution command	See "4.3 Sync Write Command" for details, the servo doe s not respond				
079	Eirmware ungradecommand	For details, please refer to the "De S heng Smart Servo Firmware Upgrade"				
02/0	Finnware upgradecommand	file				
0x7E	Factory test command	See the file "Factory Test Command Address List" for details				
0x7F	Customer-specific command	For details, please refer to the file "Customizedcommandaddress list"				

4.1、Multi-ID read command _0x82

(To be completed)

4.2、Multi-ID write command _0x83

The command function is to write data to multiple target IDs at the same time in one command. It is mainly uæd to make multiple servos start to rotate at the same time, improve control consistency, and save time than sending commands one by one. But it should be noted that the size of eachcommanddata packet is limited (the total number of bytes is less than 256), and the total number of target IDs should be controlled.

This commandfunction only supports the following addresses: 0x64 0x65 0x660x68 0x6E 0x6F

Frame	ID	Data	Command	Command	Parameter	Data
header	number	length	function	address	sequence	validation
0xF9 0xFF	0xFE	N+3	0x83	adr	Parameters	Checksum

In the command parameter sequence, it contains the number of data bytes sent to the servo (the amount of data for each servo is the same), the target ID number, and the data to be sent. The start byte of the sequence is the number of data bytes sent, and then the target ID number + data sent to the target .

example 1: Send turn ontorque command to ID1, ID2, ID3

F9 FF FE 0A 83 64 <u>01 01 02 02 02 03 [</u>checksum]

example 2: Send timing control command to ID5, ID7, ID9

F9 FF FE 13 83 65 04 05 00 00 E8 03 07 5A 00 E8 03 09 A6 FF E8 03 [checksum] example 3: Send timing control commands to ID5, ID7, ID9, omitting time/speed parameters

F9 FF FE 0D 83 65 02 05 00 00 07 5A 00 09 A6 FF [checksum]

4.3、Sync write command _0x04, Sync write execution command _0x84

This command is the same as "write command_0x03", the difference is that the command can only be sent using the target ID, and the servo only puts the data in the buffer after receiving the command, and will not perform the write actionuntil it receives the "Sync write execution command_0x84".

The 0x84 command has no command address and command parameters. It is generally sent by broadcast ID, so that all servos received sync write command will execute at the same time.

It should be noted that before the 0x84 commandis received, the previous data will be overwritten if the 0x04 commandis received again, and the data will be cleared if other functional commandare received in the middle that is, the previous commandmust be 0x04 command when the 0x84 commandis received.

The function of this command is similar to the 0x83 command, which allows multiple servos to start executing at the same time to remove the time difference between them, but it cannot shorten the communication time by itself.

example 1: Send open torque commands to ID1, ID2, ID3

F9 FF 01 04 04 64 02 [checksum]

F9 FF 02 04 04 64 02 [checksum]

F9 FF 03 04 04 64 02 [checksum]

F9 FF FE 02 84 [checksum] Turn on the torque at the same time after receiving the command

example 2: Send timing control commands to ID5, ID7, ID9

F9 FF 05 07 04 65 00 00 E8 03 [checksum]

F9 FF 07 07 04 65 5A 00 E8 03 [checksum]

F9 FF 09 07 04 65 A6 FF E8 03 [checksum]

F9 FF <u>FE</u> 02 84 [checksum] \boxtimes start rotating at the same timeafter receiving the command